Timoshenko Beam with Uncertainty on the Boundary Conditions

نویسندگان

  • Thiago G. Ritto
  • Rubens Sampaio
  • Edson Cataldo
چکیده

In mechanical system modeling, uncertainties are present and, to improve the predictability of the models, they should be taken into account. This work discusses uncertainties present in boundary conditions using the model of a vibrating Timoshenko beam, free in one end and pinned with rotation constrained by a linear elastic torsional spring in the other end. The Finite Element Method is used to discretize the system and two probabilistic approaches are considered to model the uncertainties: (1) the stiffness of the torsional spring is taken as uncertain and a random variable is associated to it (parametric probabilistic approach); (2) the whole stiffness matrix is considered as uncertain and a probabilistic model is constructed for the associated random matrix (nonparametric probabilistic approach). In both approaches, the probability density functions are deduced from the Maximum Entropy Principle. In the first approach only the uncertainty of a parameter is taken into account, and in the second approach, the uncertainties of the model are taken into account, globally. Both approaches are compared and their capability to improve the predictability of the system response is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions

In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...

متن کامل

Effect of Bed and Crack on the Natural Frequency for the Timoshenko Beam Using Finite Element Method

In this study, the natural frequencies and mode shapes of beams without cracks and cracked Timoshenko beams is calculated with different boundary conditions using finite element method. The energy method is used to solve the equations. Hardness and softness matrices for Timoshenko beam without crack are obtained by solving the potential and kinetic energy equations. Then for investigation of cr...

متن کامل

Vibration Analysis of Multi-Step Bernoulli-Euler and Timoshenko Beams Carrying Concentrated Masses

In this paper, vibration analysis of multiple-stepped Bernoulli-Euler and Timoshenko beams carrying point masses is presented analytically for various boundary conditions. Each attached element is considered to have both translational and rotational inertias. The method of solution is “transfer matrix method” which is based on the changes in the vibration modes at the vicinity of any discontinu...

متن کامل

Vibration of Timoshenko Beam-Soil Foundation Interaction by Using the Spectral Element Method

This article presents an analysis of free vibration of elastically supported Timoshenko beams by using the spectral element method. The governing partial differential equation is elaborated to formulate the spectral stiffness matrix. Effectively, the non classical end boundary conditions of the beam are the primordial task to calibrate the phenomenon of the Timoshenko beam-soil foundation inter...

متن کامل

Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams

In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...

متن کامل

Vibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution

In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008